Improvement of spatial resolution by tilt correction in near-field scanning microwave microscopy

نویسندگان

چکیده

The limitation of mechanical manufacturing will result in a small tilt angle the sample stage horizontal direction, which decreases spatial resolution imaging near-field scanning microwave microscopy (NSMM). In this paper, we focus on correction and improve NSMM image. results electromagnetic simulation line scan measurement demonstrate critical parameters affecting sensitivity NSMM, such as length probe extending out cavity, tip–sample distance, tip apex size. images can rotate successfully to plane with methods, local average re-interpolation are applied denoise images. Experimental copper thin film grid, coin texture, lithography mask, leaf vein obtained. before after verify improvement all above methods.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Method of increasing spatial resolution of the scanning near-field microwave microscopy

In this article we propose methods for the measurement of electric intensity of a microwave field above the surface of microwave circuits. Using miniaturized coaxial antennas and a special probe positioning system, we measure both the amplitude and the phase of the induced field above the device under test. We introduce a position/signal difference method to further increase the spatial resolut...

متن کامل

An overview of scanning near-field optical microscopy in characterization of nano-materials

Scanning Near-Field Optical Microscopy (SNOM) is a member of scanning probe microscopes (SPMs) family which enables nanostructure investigation of the surfaces on a wide range of materials. In fact, SNOM combines the SPM technology to the optical microscopy and in this way provide a powerful tool to study nano-structures with very high spatial resolution. In this paper, a qualified overview of ...

متن کامل

An overview of scanning near-field optical microscopy in characterization of nano-materials

Scanning Near-Field Optical Microscopy (SNOM) is a member of scanning probe microscopes (SPMs) family which enables nanostructure investigation of the surfaces on a wide range of materials. In fact, SNOM combines the SPM technology to the optical microscopy and in this way provide a powerful tool to study nano-structures with very high spatial resolution. In this paper, a qualified overview of ...

متن کامل

High spatial resolution imaging with near-field scanning optical microscopy in liquids.

The mechanism of tuning fork-based shear-force near-field scanning optical microscopy is investigated to determine optimal experimental conditions for imaging soft samples immersed in liquid. High feedback sensitivity and stability are obtained when only the fiber probe, i.e., excluding the tuning fork prongs, is immersed in solution, which also avoids electrical shorting in conductive (i.e., b...

متن کامل

Scanning near-field optical microscopy.

An average human eye can see details down to 0,07 mm in size. The ability to see smaller details of the matter is correlated with the development of the science and the comprehension of the nature. Today's science needs eyes for the nano-world. Examples are easily found in biology and medical sciences. There is a great need to determine shape, size, chemical composition, molecular structure and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: AIP Advances

سال: 2021

ISSN: ['2158-3226']

DOI: https://doi.org/10.1063/5.0045355